
DEVELOPMENT AND DEPLOYMENT
SIMPLIFICATION WITH CONTAINERS

JIRI SEDLACEK

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERS

WHAT IS DOCKER

▸ One possible way how to package and ship applications
with all dependencies

▸ Lightweight virtualization - no OS emulation

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERS

DOCKER ATTRIBUTES

‣ faster spin-up times compared to VMs, low memory
footprint

‣ incremental images

‣ private/public image registry

‣ one-command deployments

‣ the workflow is completely different (and not always
simpler)

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERS

BACKGROUND OF OUR CASE

▸ No rocket science

▸ we developed RESTful webservices deployed to Tomcat
+ some asynchronous data processing on background +
little bit of data analytics

▸ Webapp server + OLTP + OLAP + document db + JMS

WHY DOCKER?

UNSATISFIED
DEVELOPER

ENVIRONMENT SETUP
WAS COMPLICATED

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERSTEXT

OUR REASONS TO START USING DOCKER

▸ difficult setup of local developer environment or using of
one common dev environment

▸ unification of used tools (same version of MySQL and
Tomcat mainly)

▸ quick initial data setup

▸ unification of workflow

▸ possibility to run integration tests on local environment -
faster reproducing of bugs/faster development

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERS

HOW WE STARTED

▸ really complicated orchestration with following tools

▸ Gradle

▸ Groovy

▸ Java

▸ Docker

▸ Docker registry

▸ Custom Arquillian modules

▸ Flywaydb tool

▸ Maven repository

▸ Git tooling

▸ And custom glue code
around it

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERS

HOW WE STARTED #2

▸ Layered images (base > Java > Tomcat, base > MariaDb,
base > Java > ActiveMQ)

▸ Reusable containers - we were using one servlet container
for more apps and for more rounds of testing

▸ Reusable data

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERS

CHALLENGES

▸ Different OS on dev machines -> Docker machine vs. Host

▸ Recreating vs. reusing containers

▸ Deployment strategy for webapps/webservices

▸ Different configuration for everybody/every environment

▸ Many usecases: starting/stopping/deploying/running all
tests/running selected tests

▸ And all of this with one tool

DEVELOPERS WERE
HAPPIER

BUT WE WANTED
MORE

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERS

FROM DEV TO PRODUCTION (ALMOST)

▸ First approach not so fit for production, because:

▸ Too tightly coupled

▸ Too much magic behind that

▸ We had just VM solution in containers

▸ Very conservative ops were strictly against any new layer
in production environment

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERS

WHAT WE THOUGHT WE NEED FOR PRODUCTION

▸ Iterative approach to calm down Ops

▸ Multi war Tomcat —>  
Separate Tomcat for each war —>  
Separate Docker container for each war —>  
No wars, but jars in Docker (SpringBoot/DropWizard) —>  
Containers orchestration —> 
Service registry/service discovery and auto-provisioning

▸ Same image in all environments, promoted to Docker
registry

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERS

BUILDING OF SERVICES

▸ One additional step - to create Docker image

▸ Automated to build cycle

▸ In ideal world - master branch always deployable

▸ master branch built and app image pushed to registry

▸ automatic pull to test environment, if tests passed, promoted
to staging

▸ automatic pull to staging - if approved, one click deploy to
production

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERS

DEPLOYING OF SERVICES

▸ No more copying of wars

▸ Simple using of application Docker image from repository
with proper version

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERSTEXT

LOGGING OF APPS

▸ Logs can be collected in the same way

▸ Container logs to stdout

▸ Container logs to syslog

▸ Container logs to logfile on Docker volume

▸ Logs can be forwarded by Logstash and shown in Kibana

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERS

CONFIGURATION MANAGEMENT

▸ Started with properties files, different one for each
environment

▸ Simple templating system for applying configuration to
each environment with defined defaults, possibility to use
some Key/Value store and override settings from
command line

▸ https://github.com/markround/tiller

https://github.com/markround/tiller

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERS

DEPLOYMENT TOPOLOGY

▸ Everything loadbalanced behind proxy, no public access
to Docker hosts

▸ Nginx proxy running in container as well and dynamic

▸ https://github.com/jwilder/nginx-proxy

▸ https://github.com/jwilder/docker-gen

https://github.com/jwilder/nginx-proxy
https://github.com/jwilder/docker-gen

WHAT WORKED
FOR US

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERSTEXT

WHAT WE HAVE LEARNED

▸ Data storage/Databases remained on physical/virtualized hardware

▸ Other hosts can have unified configuration and no special packages
except Docker

▸ Own Docker registry is a must

▸ Properly made layers of images help much

▸ It is better to prepare base image in-house

▸ you have more control over security risks

▸ you can make it as minimal as you need

DEVELOPMENT AND DEPLOYMENT SIMPLIFICATION WITH CONTAINERSTEXT

WHAT WE HAVE LEARNED #2

▸ Docker image should have just one service

▸ It should be possible to run one image in all environments  
(no hardcoded non-overridable configuration inside)

▸ Volumes are fine, but brings dependency on particular
system

▸ Storage drivers were not important for us, but may be for Ops

▸ For logging it was sufficient to use stderr and forward it by
Logstash

TEXT

WHAT THE FUTURE WOULD BE

▸ use of Kubernetes/Mezos/Docker Swarm

▸ better scaling, distributed deployment, automatic
discovery

▸ Interesting projects

▸ http://rancher.com/rancher/

▸ https://github.com/spotify/helios

http://rancher.com/rancher/
https://github.com/spotify/helios

SHORT DEMO

 Q&A

